1. 什么是债券凸性(债市)
凸性(convexity) 凸性是指在某一 到期收益率 下,到期收益率发生变动而引起的 价格 变 动幅度的变动程度。凸性是对债券价格曲线弯曲程度的一种度量。 凸性的出现是为了弥补 久期 本身也会随着 利率 的变化而变化的不足。 因为在利率变化比较大的情况下久期就不能完全描述 债券价格 对利率 变动的敏感性。凸性越大,债券价格曲线弯曲程度越大, 用修正久期度量债券的 利率风险 所产生的误差越大。
2. 债券得的持续期和债券的凸性在债券的投资管理中有什么作用
你好,久期和凸性常用于债券的投资分析,久期是债券价格上涨的百分比与到期收益率下降的百分比之比,是一个反应利率敏感性固定收益债券关于利率这一风险因子的一阶变动速率。久期越大,债券价格对收益率的变动就越敏感,收益率上升所引起的债券价格下降幅度就越大,而收益率下降所引起的债券价格上升幅度也越大。可见,同等要素条件下,久期小的债券比久期大的债券抗利率上升风险能力强,但抗利率下降风险能力较弱。这对债券投资具有重要的指导意义。
凸性是对债券价格的利率敏感性的修正,实质上是债券定价公式关于利率求取二阶导数,凸性对债券价格的影响是债券价格与收益率正向变动,凸性越高,收益率上升引起的债券价格上升幅度越大,收益率下降引起的债券价格下降幅度越小。可见,凸性越大的债券,利率上升时对投资者越有利,利率下降时可减少投资者的损失,总之可以降低风险。
在对债券投资组合进行对冲避险等操作的过程中,往往选取久期相同现金流相反的债券投资,因为这样可以使投资者避免承担利率变化带来的价格风险。但是在构造避险组合的过程中,往往选取凸性更大的组合,因为凸性大可以保证不管利率上升还是下降,都可以与风险资产对冲后带来额外的收益。
3. 利息率怎样影响债券凸性
凸性的性质是凸性随久期的增加而增加。若收益率、久期(即持续期)不变,票面利率越大,凸性越大。利率下降时,凸性增加。
对于第一句话,实际上就是说债券的市场收益率和债券的剩余期限一定,债券票面利率越低那么久期就越大(这是根据久期的性质),故此凸性越大。
对于第二句话,直接引用凸性的性质来说就是了。
必须注意的这两句话差异在于偿还期即债券的期限与持续期即久期是两个不同的时间概念。
4. 如何理解可售回债券的凸性特征
不止可回售债券啊,绝大多数债券都是呈现正凸性的。(分母上可以版乘上2,如果分母不乘2,则权要在凸性效应的分母上乘以2)(分母上可以乘上2,如果分母不乘2,则要在凸性效应的分母上乘以2)
从公式上可以看出来,只要涨得快、跌得慢,或者正向价格波动比负向价格波动快,那么凸性就是正的。
可回售债券的凸性可以从两个角度来理解。
1、债券凸性是一种对投资者有利的特性,所以当债券对于投资者有利的时候,会呈现出凸性,即涨得快、跌得慢。对于可售回债券(putable bond),由于嵌入了对投资者有利的期权,所以会呈现出比option-free bond更加大的正凸性。
2、当债券价格低于一定程度的时候,投资者会行使售回权力,所以债券价格理论上不会低于约定的回售价格,只会越来越趋近于回售价格,所以在高利率情况下的曲线会比option-free的债券上移,呈现出更大的凸性。
5. 在债券投资分析中,凸性和久期有什么作用,怎样实施免疫策略
决定久期即影响债券价格对市场利率变化的敏感性包括三要素:到期时间、息票利率和到期收益率.久期的用途
在债券分析中,久期已经超越了时间的概念,投资者更多地把它用来衡量债券价格变动对利率变化的敏感度,并且经过一定的修正,以使其能精确地量化利率变动给债券价格造成的影响.修正久期越大,债券价格对收益率的变动就越敏感,收益率上升所引起的债券价格下降幅度就越大,而收益率下降所引起的债券价格上升幅度也越大.可见,同等要素条件下,修正久期小的债券比修正久期大的债券抗利率上升风险能力强,但抗利率下降风险能力较弱.
正是久期的上述特征给我们的债券投资提供了参照.当我们判断当前的利率水平存在上升可能,就可以集中投资于短期品种、缩短债券久期;而当我们判断当前的利率水平有可能下降,则拉长债券久期、加大长期债券的投资,这就可以帮助我们在债市的上涨中获得更高的溢价.
需要说明的是,久期的概念不仅广泛应用在个券上,而且广泛应用在债券的投资组合中.一个长久期的债券和一个短久期的债券可以组合一个中等久期的债券投资组合,而增加某一类债券的投资比例又可以使该组合的久期向该类债券的久期倾斜.所以,当投资者在进行大资金运作时,准确判断好未来的利率走势后,然后就是确定债券投资组合的久期,在该久期确定的情况下,灵活调整各类债券的权重,基本上就能达到预期的效果.
久期是一种测度债券发生现金流的平均期限的方法.由于债券价格敏感性会随着到期时间的增长而增加,久期也可用来测度债券对利率变化的敏感性,根据债券的每次息票利息或本金支付时间的加权平均来计算久期.
久期的计算就当是在算加权平均数.其中变量是时间,权数是每一期的现金流量,价格就相当于是权数的总和(因为价格是用现金流贴现算出来的).这样一来,久期的计算公式就是一个加权平均数的公式了,因此,它可以被看成是收回成本的平均时间.
决定久期即影响债券价格对市场利率变化的敏感性包括三要素:到期时间、息票利率和到期收益率.
不同债券价格对市场利率变动的敏感性不一样.债券久期是衡量这种敏感性最重要和最主要的标准.久期等于利率变动一个单位所引起的价格变动.如市场利率变动1%,债券的价格变动3,则久期是3.
6. 为什么票面利率越大,凸性越大
债券价格P是未来一系列现金流的贴现,久期D就是以折现现金流为权重的未来现金流的平均回流时间。债券中一个最重要的概念就是久期,主要是为了定量的度量利率风险,但麦考利久期不易度量,所以引入了一个修正久期D/(1+y),而凸性是对债券价格利率敏感性的二阶估计,是对债券久期利率敏感性的更精确的测量。
债券价格与市场利率是呈反比。因为市场利率上升,则债券潜在购买者就要求与市场利率相一致的到期收益率,那么就需债券价格下降,即到期收益率向市场利率看齐。
债券收益率也当然是和债券价格呈反比的,但这种反比关系是非线性的,债券的凸性能够准确描述债券价格与收益率之间非线性的反比关系,而债券的久期将反比关系视为线性的,只是一个近似的公式。
将债券价格P对贴现率y(一般y为到期收益率)进行一阶求导,就可得到dP/dy=-D/(1+y)
*P
称D/(1+y)为修正久期
债券期限越长,久期也就越长,息票率越高,那么前期收到的现金流就越多,回收期就缩短,即息票率越高,久期越小。
凸性随久期的增加而增加。若收益率、久期不变,票面利率越大,凸性越大。利率下降时,凸性增加。
7. 债券所具有的凸性是指()是一种凸线型关系
凸性是对债券价格利率敏感性的二阶估计,是对债券久期利率敏感性的测量。在价格-收益率出现大幅度变动时,它们的波动幅度呈非线性关系。由持久期作出的预测将有所偏离。凸性就是对这个偏离的修正。它由以下公式定义: 无论收益率是上升还是下降,凸性所引起的修正都是正的。因此如果修正持久期相同,凸性越大越好。
8. 如何用数学方法证明债券的久期和凸性
什么是凸性
久期本身也会随着利率的变化而变化。所以它不能完全描述债券价格对利率变动的敏感性,1984年Stanley Diller引进凸性的概念。
久期描述了价格-收益率曲线的斜率,凸性描述了曲线的弯曲程度。凸性是债券价格对收益率的二阶导数。
[编辑]凸性的计算
由债券定价定理1与4可知,债券价格-收益率曲线是一条从左上向右下倾斜,并且下凸的曲线。下图中b>a。
债券定价定理1:
债券价格与到期收益率成反向关系。
若到期收益率大于息票率,则债券价格低于面值,称为折价债券(discount bonds);
若到期收益率小于息票率,则债券价格高于面值,称为溢价债券(premium bonds);
若息票率等于到期收益率,则债券价格等于面值,称为平价债券(par bonds)。
对于可赎回债券,这一关系不成立。
债券定价定理4:
若债券期限一定,同等收益率变化下,债券收益率上升导致价格下跌的量,要小于收益率下降导致价格上升的量。
例:三债券的面值都为1000元,到期期限5年,息票率7%,当到期收益率变化时。
到期收益率(%) 6 7 8
价格 1042.12 1000 960.07
债券价格变化率(%) 4.21 0 -4.00
[编辑]凸性的性质
1、凸性随久期的增加而增加。若收益率、久期不变,票面利率越大,凸性越大。利率下降时,凸性增加。
2、对于没有隐含期权的债券来说,凸性总大于0,即利率下降,债券价格将以加速度上升;当利率上升时,债券价格以减速度下降。
3、含有隐含期权的债券的凸性一般为负,即价格随着利率的下降以减速度上升,或债券的有效持续期随利率的下降而缩短,随利率的上升而延长。因为利率下降时买入期权的可能性增加了。
来自"http://wiki.mbalib.com/wiki/%E5%87%B8%E6%80%A7"
9. 关于债券凸性问题,求高手指教。最好详细一些
凸性大的会涨得多一些。凸性是对债券价格利率敏感性的二阶估计,是对债券久期利率敏感性的回测量。实际上凸答性是债券价格在交易时有一定的波动才出现的,没有价格波动的债券是没有凸性的,最主要原因是债券价格没有波动就不能体现其对利率敏感性,故此就没有凸性。而凸性大的说明其价格波动较多。由于题目设定条件是两个债券收益率和久期相同的情况下,那么凸性大的就会涨多一些。