❶ 一个债券价格和麦考利久期的计算
修正久期=麦考利久期÷[1+(Y/N)],
因为这里,1+Y/N=1+11。5%/2=1。0575;
因此,正持续时间=13.83/1.0575=12.37163,D是最合适的答案。
MACDUR=maturity(T),修改后的存续期=T/[1+(Y/N)],Y为年利率,复利次数在N个表中计算。
对于付息债券,MACDUR=每期贴现率除以当前价值乘以期数,修改后的期限=MAC/[1+(Y/N)]。
如果市场利率是Y,现金流(X1,X2,...,Xn)的麦考利久期定义为:D(Y)=[1*X1/(1+Y)^1+2*X2/(1+Y)^2+...+n*Xn/(1+Y)^n]/[X0+x1/(1+Y)^1+X2/(1+Y)^2+...+Xn/(1+Y)^n]
即D=(1*PVx1+...n*PVxn)/PVx
其中,PVXi表示第i期现金流的现值,D表示久期。
(1)利用久期计算债券价格扩展阅读:
调整期是指特定债券的到期收益率相对于麦考利期的一个小变化。这个比率是基于债券到期收益率很小的前提下的近似比率。债券价格是衡量债券价格对利率变动敏感性的一个较为准确的指标。
当投资者判断当前的利率水平有可能上升时,他们将注意力集中在短期债券上,缩短债券的期限。当投资者判断当前利率可能会下降时,延长债券到期日并加大对长期债券的投资,有助于投资者在债券市场上涨时获得更高的溢价。
修订的期限定义:
P/P物质-D乘以y+conv(1/2)乘以y²
由该公式可以看出,对于给定的到期收益率变化较小的情况下,债券价格的相对变化与修正后的期限之间存在严格的比例关系。因此,考虑到Y收益率,调整期是衡量债券价格对利率变化的敏感性的更准确的指标。
❷ 久期的债券价格
债券(bond)是发行人根据债券发行时规定的规则向债券持有人支付货币的一种义务。一般来说,一张债券支付一笔具体的数额,即它的面值(face value),或者是它在到期日的平价(par value)。
债券的票面因素包括以下几个:①债券的票面价值即面值,是债券票面表明的货币价值,是债券发行人承诺在债券到期日偿还给债券持有人的金额。②债券的到期期限,是指债券从发行之日起到偿清本息之日止的时间,也是债券发行人承诺履行合同义务的全部时间。③债券的票面利率,亦即票息率,是债券年利息和票面价值得比率。实际中债券利率有多种形式,比如单利、复利、贴现利率等。④债券的发行者名称。这是为了明确债券的债务体,也是为债权人到期时追索本息提供依据。
债券的前三个票面因素再加上实际收益率,就提供了确定债券价格的基本要素。以一个票息率固定,期间定期支付票息,最后票息和本金一起支付的固定收益债券为例,来分析它的现金流。定义c为票息率,F为票面价值,到期前有Ct=Fc,到期时则有CT=cF+F,当收益率为y时,该债券的现值可以表达为下式:
其中:
— 第t个时期的现金流
— 最后到期时的时期数
— 每次支付的时期数
—收益率
当债券的发行价格等于P时称为平价发行,大于P时称为溢价发行,低于P时称为折价发行。
当债券的票面值和票息率确定以后,在不考虑信用风险、税收风险和汇率风险等风险因素的情况下,债券的价格就和收益率密切相关。我们令 ,把 按照taylor展开式展开可表达为下面的形式:
其中, 和 分别为 关于的一阶和二阶导数。这个表达式为计算债券价格随收益率的波动情况的变化提供了很好的方法。如果只是做最基本的估计,就可以只考虑前两项,而把第三项忽略不计。这样, 关于y的一阶导数就非常重要了,而这个一阶导数即为F.R.Macaulay在1938年提出的概念:久期(ration)。
这个D也称为“Macaulay久期”,它一方面代表着债券的实际到期时间,另一方面又是债券价格对于利率变动的灵敏性度量。
❸ 一个关于债券久期的计算问题
债券息票为10元,价格用excel计算得,96.30元
久期=(1*10/(1+11%)^1+2*10/(1+11%)^2+3*10/(1+11%)^3+4*10/(1+11%)^4+5*10/(1+11%)^5+5*100/(1+11%)^5)/96.30=4.15
若利率下降1个百分点,债券价格上升=4.15*1%=4.15%
变化后债券价格=96.30*(1+4.15%)=100.30元
当然,以久期衡量的价格变化均为近似值,因为我们知道,当利率变为10%后,就等于票面利率,债券价格应该为100元整。
❹ 债券久期如何计算
债券久期是债券投资的专业术语,反映的是债券价格相对市场利率正常的波动敏感程度,也就是债券持有到期时间。久期越长,债券对利率敏感度越高,其对应风险也越大。
债券久期计算公式有三种,分别是:
公式一:
(4)利用久期计算债券价格扩展阅读:
债券是政府、企业、银行等债务人为筹集资金,按照法定程序发行并向债权人承诺于指定日期还本付息的有价证券。
债券(Bonds / debenture)是一种金融契约,是政府、金融机构、工商企业等直接向社会借债筹借资金时,向投资者发行,同时承诺按一定利率支付利息并按约定条件偿还本金的债权债务凭证。债券的本质是债的证明书,具有法律效力。债券购买者或投资者与发行者之间是一种债权债务关系,债券发行人即债务人,投资者(债券购买者)即债权人 。
债券是一种有价证券。由于债券的利息通常是事先确定的,所以债券是固定利息证券(定息证券)的一种。在金融市场发达的国家和地区,债券可以上市流通。在中国,比较典型的政府债券是国库券。
❺ 请教 债券价格及有效期计算问题
债券理论价格公式就是把各期的现金流用折现率进行折现到现值的总和。
债券久期(即持续期)公式就是把各期的现金流现值各自乘以其现金流时间点作为权数后的总和除以债券价格。
债券修正久期就是把债券久期乘以折现率。
注:上述公式不太好写,只能用文字表述,最主要是要用到一个数学上的特殊符号。
上题实际上价格一看就知道是面值,由于其票面利率等于市场利率,计算式子如下:
债券价格=100/(1+10%)+100/(1+10%)^2+100/(1+10%)^3+(100+1000)/(1+10%)^4=1000元
债券久期=[1*100/(1+10%)+2*100/(1+10%)^2+3*100/(1+10%)^3+4*(100+1000)/(1+10%)^4]/1000=3.487年
修正久期=3.487/(1+10%)=3.17年
❻ 什么是债券修正久期,具体怎么计算 / 债券
修正久期指的是对于给定的到期收益率的微小变动,债券价格的相对变动与其麦考利久期为正变关系。这种正变关系只是一种近似的比例关系,它的成立是以债券的到期收益率很小为前提的。当然,为了更精确地描述债券价格对于到期收益率变动的灵敏性,又引入了修正久期模型,考虑凸度。
公式:△P/P≈-D*×△y+(1/2)*conv*(△y)^2
❼ 利用久期计算的债券价格为什么和实际价格不一样
理论价格和实际价格不一样很正常的。因为理论要成立有很多假设,现实市场条件是不满足的。比如用久期计算利率波动带来的债券价格波动,那是只有在波动很小的情况下才准确成立,例如1个BP,但你使用时,往往至少用波动25个BP,误差就很大了。
而且影响实际价格的因素除了久期还有别的,例如供求,例如凸性。
❽ 有关久期凸性的计算债券价格
第一问,以市场利率为6%为例,计算现在的合理债券价格=5/(1+6%)+5/(1+6%)^2+5/(1+6%)^3+5/(1+6%)^4+5/(1+6%)^5+100/(1+6%)^5=95.79元
其他各种利率,把6%换成不同的折现率,分别计算。
在市场利率为5%、5.5%、5.85%、6%、6.2%的时候,债券价格分别为:
100元、97.86元、96.40元、95.79元、94.97元。
第二问,以市场利率5%为例,市场利率上升5、10、50、100个基点,变化后的市场利率分别为5.05%、5.1%、5.5%和6%,套用以上公式,债券价格分别为:99.78元、99.57元、97.86元、95.79元。
修正久期公式为△P/P≈-D*×△y
我们考察市场利率从5%变化到5.05%这个微小变化,价格变化为-0.22,利率变化为0.05%
P=100,所以修正久期D*=4.4
根据这个修正久期,当市场利率从5%变化到5.1%的时候,债券价格将下降4.4*0.1=0.44元,即,从100元变为99.56元,实际价格变为99.57元,实际的差距是0.01元。
凸性设为C,则对于0.1个百分比的变化率,有
0.01元=1/2 * C * 0.1^2
解得C=2,凸度为2.
以上供参考。
❾ 债券久期计算
求解:
时间t 息票额 折现因子1/(1+y) 折现值 时间加权值
1 8 0.91 7.28 7.28
2 8 0.8281 6.62 13.24
3 8 0.7536 6.03 18.09
3 100 0.7536 75.36 226.08
合计 95.29 264.69
久期=264.69/95.29=2.78
修正久期=久期/(1+0.1)=2.53
P'=-修正久期*债券价格*利率变化=-2.53*95.29*0.01=-2.41元,即央行调高利率到11%,债券价格下跌2.41元
❿ 什么是久期在债券中起到什么作用他的计算公式为
生存分析,专门用来做这个的,它估计出生存时间的分布,然后当然就可以计算平均年限了。