A. 含权债各项指标计算公式急求
要看是复息债或是单息债,一般情况下复息是:面值×利率,每年处息1次,复息是:面值×〈1+利率〉年的次方。
B. 含权债券如何定价
我认为就是按5年期定价附加选择权,而选择权都是有价值的,所以其实比单纯的5年期要好。至于5年到后,是不是上调,要看市场情况和发行人资金紧张情况
C. 什么是债券的久期,修正久期和基点价值
1、债券久期是指由于决定债券价格利率风险大小的因素主要包括偿还期和息票利率,因此需要找到某种简单的方法,准确直观地反映出债券价格的利率风险程度。
2、修正久期是对于给定的到期收益率的微小变动,债券价格的相对变动与其麦考利久期的比例。这种比例关系是一种近似的比例关系,以债券的到期收益率很小为前提。是在考虑了收益率的基础上对麦考利久期进行的修正,是债券价格对于利率变动灵敏性的更加精确的度量。
3、基点价格值是指到期收益率变化一个基点,也就是0.01个百分点时,债券价格的变动值。基点价格值是价格变化的绝对值,价格变化的相对值称作价格变动百分比,它是价格变化的绝对值相对于初始价格的百分比,用式子表示就是:价格变动百分比=基点价格值/初始价格。
应答时间:2020-12-09,最新业务变化请以平安银行官网公布为准。
[平安银行我知道]想要知道更多?快来看“平安银行我知道”吧~
https://b.pingan.com.cn/paim/iknow/index.html
D. 债券 久期是什么
债券的久期
1.麦考利久期又称为存续期,是指债券的平均到期时间,回从现值角度度量了债券现金流答的加权平均年限,即债券投资者收回其全部本金和利息的平均时间。
2.零息债券麦考利久期等于期限。
3.麦考利久期公式:Dmac=-(△P/△y)(1+y)/p。
修正的麦考利久期等于麦考利久期除以(1+y),即:
E. 请列举两种含权债券并分别解释所含权利的意义
含权债券的解释太难了。
F. 久期的债券投资
利用久期控制利率风险
在债券投资里,久期可以被用来衡量债券或者债券组合的利率风险,一般来说,久期和债券的到期收益率成反比,和债券的剩余年限及票面利率成正比。对于一个普通的附息债券,如果债券的票面利率和其当前的收益率相当的话,该债券的久期就等于其剩余年限当一个债券是贴现发行的无票面利率债券,那么该债券的剩余年限就是其久期。债券的久期越大,利率的变化对该债券价格的影响也越大,因此风险也越大。在降息时,久期大的债券上升幅度较大;在升息时,久期大的债券下跌的幅度也较大。因此,预期未来升息时,可选择久期小的债券。在债券分析中久期已经超越了时间的概念,投资者更多地把它用来衡量债券价格变动对利率变化的敏感度,并且经过一定的修正,以使其能精确地量化利率变动给债券价格造成的影响。修正久期越大,债券价格对收益率的变动就越敏感,收益率上升所引起的债券价格下降幅度就越大,而收益率下降所引起的债券价格上升幅度也越大。
债券对利率变动的反应特征如下:债券价格与利率变化反向变动;在给定利率变化水平下,长期债券价格变动较大,因此债券价格变化直接与期限有关;随着到期时间的增加,债券对于利率变化的敏感度是以一个递减的速度增长;由相同幅度的到期收益率的绝对变化带来的价格变化是非对称的,具体来说,在期限给定条件下,到期收益率降低引起的价格上升,大于到期收益率上升引相同幅度起的价格下降;票息高的债券比那些票息低的债券对利率的敏感性要低。
利用久期进行免疫
所谓免疫,就是构建这样的一个投资组合,在组合内部,利率变化对债券价格的影响可以互相抵消,因此组合在整体上对利率不具有敏感性。而构建这样组合的基本方法就是通过久期的匹配,使附息债券可以精确地近似于一只零息债券。利用久期进行免疫是一种消极的投资策略,组合管理者并不是通过利率预测去追求超额报酬,而只是通过组合的构建,在回避利率波动风险的条件下实现既定的收益率目标。在组合品种的设计中,除了国债可以选入组合外,部分收益率较高的企业债券及金融债券也能加入投资组合,条件是控制好匹配的久期。
但是,免疫策略本身带有一定的假设条件,比如收益率曲线的变动不是很大,到期收益率的高低与市场利率的变化之间有一个平衡点,一旦收益率确实发生了很大的变动,则投资组合不再具有免疫作用,需要进行再免疫,或是再平衡;其次,免疫严格限定了到期支付日,对于那些支付或终止期不能确定的投资项目而言并不是最优;再次,投资组合的免疫作用仅对于即期利率的平行移动有效,对于其他变动,需要进一步拓展应用。
利用久期优化投资组合
进行免疫后的投资组合,虽然降低了利率波动的风险,但是组合的收益率却会偏低。为了实现在免疫的同时也能增加投资的收益率,可以使用回购放大的办法,来改变某一个债券的久期,然后修改免疫方程式,找到新的免疫组合比例,这样就可以提高组合的收益率。但是,在回购放大操作的同时,投资风险也在同步放大,因此要严格控制放大操作的比例。
G. 如何利用久期和凸性 衡量债券的利率风险
久期和凸性是衡量债券利率风险的重要指标。很多人把久期简单地视为债券的到期期限,其实是对久期的一种片面的理解,而对凸性的概念更是模糊。在债券市场投资行为不断规范,利率风险逐渐显现的今天,如何用久期和凸性量化债券的利率风险成为业内日益关心的问题。
久期
久期(也称持续期)是1938年由
F.R.Macaulay提出的,用来衡量债券的到期时间。它是以未来收益的现值为权数计算的到期时间。其公式为
其中,P=债券现值,Ct=每年支付的利息,y=到期收益率,n=到期期数,M=到期支付的面值。
可见久期是一个时间概念,是到期收益率的减函数,到期收益率越高,久期越小,债券的利率风险越小。久期较准确地表达了债券的到期时间,但无法说明当利率发生变动时,债券价格的变动程度,因此引入了修正久期的概念。
修正久期
修正久期是用来衡量债券价格对利率变化的敏感程度的指标。由于债券的现值
对P求导并加以变形,得到:
我们将
的绝对值称作修正久期,它表示市场利率的变化引起的债券价格变动的幅度。这样,不同现值的券种就可以用修正久期这个指标进行比较。
由公式1和公式2我们可以得到:
在某一特定到期收益率下,P为常数,我们记作P0,即得到:
由于P0是理论现值,为常数,因此,债券价格曲线P与P
/P 0有相同的形状。由公式7,在某一特定到期收益率下,P /P
0的斜率为修正久期,而债券价格曲线P的斜率为P0×(修正久期)。
修正久期度量了收益率与债券价格的近似线性关系,即到期收益率变化时债券价格的稳定性。修正久期越大,斜率的得绝对值越大,P对y的变动越敏感,y上升时引起的债券价格下降幅度越大,y下降时引起的债券价格上升幅度也越大。可见,同等要素条件下,修正久期小的债券较修正久期大的债券抗利率上升风险能力强,但抗利率下降风险能力较弱。
但修正久期度量的是一种近似线性关系,这种近似线性关系使由修正久期计算得出的债券价格变动幅度存在误差。如下图,对于债券B′,当收益率分别从y上升到y1或下降到y2,由修正久期计算出来的债券价格变动分别存在P1′P1"和P2′P2"的误差。误差的大小取决于曲线的凸性。
市场利率变化时,修正久期稳定性如何?比如上图中,B′和B"的修正久期相同,是否具有同等利率风险呢?显然不同。当y变大时,B"价格减少的幅度要小,而当y变小时,B"价格变大的幅度要大。显然,B"的利率风险要小于
B′。因此修正久期用来度量债券的利率风险仍然存在一定误差,尤其当到期收益率变化较大时。凸性可以更准确地度量该风险。
凸性
利用久期衡量债券的利率风险具有一定的误差,债券价格随利率变化的波动性越大,这种误差越大。凸性可以衡量这种误差。
凸性是对债券价格曲线弯曲程度的一种度量。凸性越大,债券价格曲线弯曲程度越大,用修正久期度量债券的利率风险所产生的误差越大。严格地定义,凸性是指在某一到期收益率下,到期收益率发生变动而引起的价格变动幅度的变动程度。
根据其定义,凸性值的公式为:
凸性值
=
凸性值是价格变动幅度对收益率的二阶导数。假设P0是理论现值,则凸性值=
应用
由于修正久期度量的是债券价格和到期收益率的近似线性关系,由此计算得出的债券价格变动幅度存在误差,而凸性值对这种误差进行了调整。
根据泰勒系列式,我们可以得到
的近似值:
这就是利用修正久期和凸性值量化债券利率风险的计算方法。我们可以看到,当y上升时, 为负数,若凸性值越大,则
的绝对值越小;当y下降时,为正数,若凸性值越大,则越大。
因此,凸性值越大,债券利率风险越小,对债券持有者越有利;而修正久期具有双面性,具有较小修正久期的债券抗利率上升风险较强,而当利率下降时,其价格增幅却小于具有较大修正久期债券的价格增幅。
以国债21国债(15)和03国债(11)为例,两券均为7年期固息债,每年付息一次(附表为今年3月1日的有关指标)。
相比之下,21国债(15)具有较小的修正久期和较小的凸性值。如果收益率都上升50个基点,其价格变动幅度分别为:
21国债(15):
03国债(11):
可见经过对久期和凸性的简单计算,可以比较直观地衡量债券的利率风险。如果收益率变动幅度不大,则一般修正久期即可以作为度量利率风险的近似指标。
H. 什么是含权债券
含权复债券是除了到期时可以得到约定的制利息以外,还附带有其它约定的权利的一种债券。
①债券(Bonds / debenture)是一种金融契约,是政府、金融机构、工商企业等直接向社会借债筹措资金时,向投资者发行,同时承诺按一定利率支付利息并按约定条件偿还本金的债权债务凭证。
②含权债券如何定价:按5年期定价附加选择权,而选择权都是有价值的,所以其实比单纯的5年期要好。至于5年到后,是不是上调,要看市场情况和发行人资金紧张情况。
I. CFA一级中关于固定收益部分久期凸性计算的一道题。请教
根据ration,变化2%*10.34=20.68%
再根据convexity修正,肯定是小于20.68%的,就选17.65%
具体变化=-2%*10.34+(1/2)*151.60*2%*2%=-17.648%
至于困扰你的计算回convexity时候为什答么要除以2,因为ration是利率变化的一阶导数,而convexity是利率变化的二阶导数,泰勒级数的展开的第二项,就是要乘以二分之一,如果有三阶导数,更精确,三阶导数的系数就是六分之一。这是一个纯粹的数学问题。你在考试时,需要记住这个公式。
J. 1)计算一个债券的修正久期、、请给出详细解答过程
修正久期=麦考利久期÷[1+(Y/N)],
因为,在本题中,1+Y/N=1+11.5%/2=1.0575;
所以,正久期=13.083/1.0575=12.37163,D是最合适的答案。
麦考林久期(MAC DUR),修正久期(MOD DUR)分零息与付息债券,对于零息MAC DUR=到期时间(T),修正久期=T/[1+(Y/N)],Y表示年利率,N表计算复利次数。
对于付息债券,MAC DUR=每期支付折现除以现值乘与期数,修正久期=MAC/[1+(Y/N)]。
修正久期是对于给定的到期收益率的微小变动,债券价格的相对变动与其麦考利久期的比例。这种比例关系是一种近似的比例关系,以债券的到期收益率很小为前提。是在考虑了收益率的基础上对麦考利久期进行的修正,是债券价格对于利率变动灵敏性的更加精确的度量。
当投资者判断当前的利率水平有可能上升时,集中投资于短期债券、缩短债券久期;当投资者判断当前的利率水平有可能下降时,拉长债券久期、加大长期债券的投资,帮助投资者在债市的上涨中获得更高的溢价。
修正久期定义:
△P/P≈-D*×△y+(1/2)*conv*(△y)^2
从这个式子可以看出,对于给定的到期收益率的微小变动,债券价格的相对变动与修正久期之间存在着严格的比例关系。所以说修正久期是在考虑了收益率项 y 的基础上对 Macaulay久期进行的修正,是债券价格对于利率变动灵敏性的更加精确的度量。