用文化財經軟體,編寫程序化交易系統,具體參考官網教程
㈡ 股票量化是什麼意思
量化交易是指以先進的數學模型替代人為的主觀判斷,利用計算機技術從內龐大的歷史數據容中海選能帶來超額收益的多種「大概率」事件以制定策略,極大地減少了投資者情緒波動的影響,避免在市場極度狂熱或悲觀的情況下作出非理性的投資決策。
㈢ 股票量化是什麼
量化交易是指以先進的數學模型替代人為的主觀判斷,利用計算機技術從龐大版的歷史數權據中海選能帶來超額收益的多種「大概率」事件以制定策略,極大地減少了投資者情緒波動的影響,避免在市場極度狂熱或悲觀的情況下作出非理性的投資決策。
㈣ 量化模型是什麼意思
量化模型,是把數理統計學應用於科學數據,以使數理統計學構造出來的模型得到經驗上的支持,並獲得數值結果。這種分析是基於理論與觀察的並行發展,而理論與觀測又通過適當的推斷方法而得以聯系。
一個完整的量化模型包括哪些?
近幾年,量化投資在國內興起,但在很多人眼裡,量化投資彷彿是一個非常神秘的新事物。而實際上,量化投資的無非就是寬客通過計算機語言,將交易策略布置到一個量化系統中,然後進行回測和實戰的過程。量化投資的本質還是投資者的智慧,只是實現過程中運用到計算機這一工具。
寬客們到底是如何系統的構建一個完整的量化模型的?可以肯定的是,寬客跟普通投資者一樣,也在觀察市場,產生一些普通投資者也會想到的想法,當寬客產生一些想法時,他們會通過計算機去驗證他們的想法是否靠譜或者是能否帶來收益。而作為普通投資者,實現想法往往是困難的,如同普通投資者在投資或炒股過程中,發現在15分鍾K線圖,上升趨勢中股價跌破MA169後便會進入調整。普通投資者只是感覺,而寬客可以通過編寫程序然後在市場的歷史數據回測,驗證這個想法是否靠譜。
一個簡單的想法編寫成簡單的程序,這明顯不能稱作為量化模型,但這卻是任何一個量化模型的來源,即人的想法。完整的量化模型應當包括:策略模型、風險模型、交易成本模型、投資組合構建模型、執行模型,如下圖:
投資組合構建模型:投資組合構建模型在於構建一個能創造最大盈利的投資組合。主要分為:基於規則的投資組合構建模型和基於優化的投資組合構建模型。基於規則的投資組合構建模型主要分三類:相等頭寸加權,相等風險加權,信號驅動型加權。其中前兩類分別保證了投資組合的每個個股頭寸相等和所承擔的風險相等。第三類根據信號強度來加權,投資組合中個股與策略模型設定的條件越接近則賦予的權重越大,這是合理決定頭寸規模的最佳途徑。
執行模型:執行模型是實施量化模型的最後一個環節,如果沒有執行模型,那麼整個量化模型並沒有存在的意義。執行模型中訂單執行演算法是最關鍵的,其主要目的是,以盡可能低的價格,盡可能完整地完成想要交易的訂單。具體的執行演算法包括:採用何種訂單類型,採用進取訂單還是被動訂單,採用大訂單還是小訂單。對於資金量比較小的寬客,執行模型往往是比較簡單的,一旦出現信號,其所需成交量的並不需要太大。而對於資金量較大的寬客來說,執行模型是比較復雜的,需要根據實際情況來選擇合適的下單方式。
以上就是量化模型的整個系統框架,其中任何一個部分都發揮至關重要的作用,因此一個完整的能盈利的量化模型是非常有價值的。
㈤ 如何量化炒股
我在其中遇到很多煩惱,在量化投資中,不知道你是不是有這樣的煩惱,下面是我的煩惱:
1、專業量化炒股工具太復雜,有沒有適合普通股民的量化分析工具呢? 有自己的選股方法和參考指標,如何去驗證是否能帶來收益呢? 很多牛人都有自己的炒股策略,誰的才是真的好呢? 增減或替換選股指標,需要大量的數據運算,耗時費力,該如何避免呢?
不過這些問題數庫多因子量化平台可以幫你解決,3分鍾量化選股,做自己的股票分析師。
數庫多因子量化平台是數庫公司為了普及量化投資,為廣大股民提供的新型可視化量化工具,通過尋找與股票未來收益最相關的因子作為選股標准,綜合運用多因子構建模型對股票進行評價,選取綜合得分高的股票,以期獲得超額收益。
總結:無論你是小白還是專業人士,都可以在數庫多因子量化平台上盡情施展自己的炒股策略,炒股變得不再乏味煩心,而是便捷高效,輕松實現高收益。
㈥ 量化投資模型如何開發的
量化的模型開發大致分為以下幾個環節:
①數據處理,看你用什麼工具,R還是Matlab還是python,或者是c++,最好是工具本身的格式,這樣速度會快的多,比如Rdata,或matlab的mat格式,或者python的npy格式,或者c++的二進制格式,還有就是你要用什麼數據,分鍾數據,切片數據,還是tick數據,根據你的需求不同進行處理。
②指標建立,這個工作可以看成問題的關鍵,如何建立指標,你的思想是什麼,都來源於此,舉個簡單的均線指標,matlab,就是ma=movavg(data,length)
③模型回測,據我理解就是一個大循環:
if time>9. && time<15 && close(i)>ma(i) && p!=1
buy
else
sell
if p==1 && 止損條件
平倉
等等
④計算收益
然後根據收益,夏普比率等,改條件,重復上面的工作。
總結:
開發模型的步驟一般是:數據處理、尋找因子、回測驗證、實盤模擬、風險歸因。
備註:
數據處理:去極值、標准化、中性化;數據預處理。
尋找因子:尋找Alpha、尋找收益波動比因子、另外優礦上提供了近400個因子因子可以自己驗證。
㈦ 量化交易都有哪些主要的策略模型
隨著量化交易的發展,單一技術指標的策略會面臨失效的問題。所以現在的策略都是復合型的。
經典量化交易策略(包括價值投資、技術指標、配對輪動、機器學習等)、研究型文章等
㈧ 什麼是股票量化交易
量化交易是指以先進的數學模型替代人為的主觀判斷,利用計算機技術從龐大的歷史數據中海選能帶來超額收益的多種「大概率」事件以制定策略,極大地減少了投資者情緒波動的影響,避免在市場極度狂熱或悲觀的情況下作出非理性的投資決策。
㈨ 量化網上的量化交易有哪些主要的策略模型
國內的量化策略可以簡單分為三個類型,Alpha策略,CTA策略以及高頻交易策略。其中主要的是Alpha策略和CTA策略。
㈩ 如何建立一個股票量化交易模型並模擬
研究量化投資模型的目的是找出那些具體盈利確定性的時空價格形態,其最重要手段的概率取勝,最重要的技術是概率統計,最主要的研究方向是市場行為心理。那麼我們在選擇用於研究的參數時,也應該用我們的經驗來確定是否把某技術參數放進去,因為一般來說定性投資比較好用的參數指標對量化投資同樣適用。
量化投資區別於傳統定性投資的主要特徵在於模型。我打個比方,我們看病,中醫與西醫的診療方法是不同,中醫是望、聞、問、切,最後判斷出的結果,很大程度上基於中醫的經驗,主觀定性程度大一些;西醫就不同了,先要病人去拍片子、化驗等,這些都要依託於醫學儀器,最後得出結論,對症下葯。中醫對醫生的經驗要求非常高,他們的主觀判斷往往決定了治療效果,而西醫則要從容得多,按事先規定好的程序走就行了。量化投資就是股票投資中的西醫,它可以比較有效地矯正理智與情緒的不兼容現象。
量化投資的一般思路:選定某些技術指標(我們稱之為參數,往往幾個組成一組),並將每一個參數的數據范圍進行分割,成幾等份。然後,用計算機編程寫出一段能對這些參數組對股票價格造成的影響進行數據統計的程序,連接至大型資料庫進行統計計算,自動選擇能夠達到較高收益水平的參數組合。但是選出這些參數組後還不能馬上應用,因為這里涉及到一個概率陷阱的問題,比如說,有1到100這一百個數字放在那裡,現在讓你選擇,請問你選到100的可能性是多大?是的,就是1/100,如果較幸運你選到了100並不能說明你比別人聰明,而是概率的必然。所以,在進行統計時要特別關注統計的頻率與選出的結果組數量之間的關系。在選出符合要求的參數組後我們還應留出至少三年的原始市場數據進行驗證,只有驗證合格後才能試用。
量化投資原始數據策略:我們選用96年後的市場數據,因為96年股市有過一次交易政策改革(你可以自己查詢了解一下),為了不影響研究結果我們不採納96年以前的數據進資料庫。
量化投資研究的硬設備:高計算性能電腦,家用電腦也可以,不過運算時間會很長,我曾經用家用電腦計算了三個月時間才得到想要的數據。
統計方法:可以選用遺傳演算法,但我在這里陪大家做的是比較簡單的模型,所以採用普通統計方法就可以了。
用於量化研究的軟體:我採用的是免費的大型資料庫MYSQL,ASP網路編程語言,以及可以設置成網路伺服器的旗艦版WIN7操作系統。