Ⅰ 請問普通附息債券的凸性是大於小於還是等於0為什麼
C/(1+r)的X次方 的二階導數大於0,所以是大於0的
望採納
Ⅱ 利息率怎樣影響債券凸性
凸性的性質是凸性隨久期的增加而增加。若收益率、久期(即持續期)不變,票面利率越大,凸性越大。利率下降時,凸性增加。
對於第一句話,實際上就是說債券的市場收益率和債券的剩餘期限一定,債券票面利率越低那麼久期就越大(這是根據久期的性質),故此凸性越大。
對於第二句話,直接引用凸性的性質來說就是了。
必須注意的這兩句話差異在於償還期即債券的期限與持續期即久期是兩個不同的時間概念。
Ⅲ 債券收益率、久期不變,票面利率越大,凸性越大。 是么為什麼
盡管該結論得到普遍應用,但經過計算,必須說這個結論是錯的。
首先對於n期零息債來說,無論票面利率是多少,它的久期都是n, 在債券收益率r 不變的情況下,它的凸性也不變,即凸性等於n(n+1)/(1+r)^2。也就是說,對零息債而言,只要期限確定(久期不變),它的凸性也不變。
對於附息債券,這個結論的前提是錯的,因為附息債券的久期大小受票面利率、市場利率(收益率)和期限的影響,只要票面利率變化,久期也變,在市場利率和期限一定的情況下,票面利率與久期負相關,票面利率越大,久期越小。不存在票面利率變大而久期不變的附息債。
Ⅳ 關於債券凸性問題,求高手指教。最好詳細一些
凸性大的會漲得多一些。凸性是對債券價格利率敏感性的二階估計,是對債券久期利率敏感性的回測量。實際上凸答性是債券價格在交易時有一定的波動才出現的,沒有價格波動的債券是沒有凸性的,最主要原因是債券價格沒有波動就不能體現其對利率敏感性,故此就沒有凸性。而凸性大的說明其價格波動較多。由於題目設定條件是兩個債券收益率和久期相同的情況下,那麼凸性大的就會漲多一些。
Ⅳ 如何利用久期和凸性 衡量債券的利率風險
久期和凸性是衡量債券利率風險的重要指標。很多人把久期簡單地視為債券的到期期限,其實是對久期的一種片面的理解,而對凸性的概念更是模糊。在債券市場投資行為不斷規范,利率風險逐漸顯現的今天,如何用久期和凸性量化債券的利率風險成為業內日益關心的問題。
久期
久期(也稱持續期)是1938年由
F.R.Macaulay提出的,用來衡量債券的到期時間。它是以未來收益的現值為權數計算的到期時間。其公式為
其中,P=債券現值,Ct=每年支付的利息,y=到期收益率,n=到期期數,M=到期支付的面值。
可見久期是一個時間概念,是到期收益率的減函數,到期收益率越高,久期越小,債券的利率風險越小。久期較准確地表達了債券的到期時間,但無法說明當利率發生變動時,債券價格的變動程度,因此引入了修正久期的概念。
修正久期
修正久期是用來衡量債券價格對利率變化的敏感程度的指標。由於債券的現值
對P求導並加以變形,得到:
我們將
的絕對值稱作修正久期,它表示市場利率的變化引起的債券價格變動的幅度。這樣,不同現值的券種就可以用修正久期這個指標進行比較。
由公式1和公式2我們可以得到:
在某一特定到期收益率下,P為常數,我們記作P0,即得到:
由於P0是理論現值,為常數,因此,債券價格曲線P與P
/P 0有相同的形狀。由公式7,在某一特定到期收益率下,P /P
0的斜率為修正久期,而債券價格曲線P的斜率為P0×(修正久期)。
修正久期度量了收益率與債券價格的近似線性關系,即到期收益率變化時債券價格的穩定性。修正久期越大,斜率的得絕對值越大,P對y的變動越敏感,y上升時引起的債券價格下降幅度越大,y下降時引起的債券價格上升幅度也越大。可見,同等要素條件下,修正久期小的債券較修正久期大的債券抗利率上升風險能力強,但抗利率下降風險能力較弱。
但修正久期度量的是一種近似線性關系,這種近似線性關系使由修正久期計算得出的債券價格變動幅度存在誤差。如下圖,對於債券B′,當收益率分別從y上升到y1或下降到y2,由修正久期計算出來的債券價格變動分別存在P1′P1"和P2′P2"的誤差。誤差的大小取決於曲線的凸性。
市場利率變化時,修正久期穩定性如何?比如上圖中,B′和B"的修正久期相同,是否具有同等利率風險呢?顯然不同。當y變大時,B"價格減少的幅度要小,而當y變小時,B"價格變大的幅度要大。顯然,B"的利率風險要小於
B′。因此修正久期用來度量債券的利率風險仍然存在一定誤差,尤其當到期收益率變化較大時。凸性可以更准確地度量該風險。
凸性
利用久期衡量債券的利率風險具有一定的誤差,債券價格隨利率變化的波動性越大,這種誤差越大。凸性可以衡量這種誤差。
凸性是對債券價格曲線彎曲程度的一種度量。凸性越大,債券價格曲線彎曲程度越大,用修正久期度量債券的利率風險所產生的誤差越大。嚴格地定義,凸性是指在某一到期收益率下,到期收益率發生變動而引起的價格變動幅度的變動程度。
根據其定義,凸性值的公式為:
凸性值
=
凸性值是價格變動幅度對收益率的二階導數。假設P0是理論現值,則凸性值=
應用
由於修正久期度量的是債券價格和到期收益率的近似線性關系,由此計算得出的債券價格變動幅度存在誤差,而凸性值對這種誤差進行了調整。
根據泰勒系列式,我們可以得到
的近似值:
這就是利用修正久期和凸性值量化債券利率風險的計算方法。我們可以看到,當y上升時, 為負數,若凸性值越大,則
的絕對值越小;當y下降時,為正數,若凸性值越大,則越大。
因此,凸性值越大,債券利率風險越小,對債券持有者越有利;而修正久期具有雙面性,具有較小修正久期的債券抗利率上升風險較強,而當利率下降時,其價格增幅卻小於具有較大修正久期債券的價格增幅。
以國債21國債(15)和03國債(11)為例,兩券均為7年期固息債,每年付息一次(附表為今年3月1日的有關指標)。
相比之下,21國債(15)具有較小的修正久期和較小的凸性值。如果收益率都上升50個基點,其價格變動幅度分別為:
21國債(15):
03國債(11):
可見經過對久期和凸性的簡單計算,可以比較直觀地衡量債券的利率風險。如果收益率變動幅度不大,則一般修正久期即可以作為度量利率風險的近似指標。
Ⅵ 如何理解可售回債券的凸性特徵
不止可回售債券啊,絕大多數債券都是呈現正凸性的。(分母上可以版乘上2,如果分母不乘2,則權要在凸性效應的分母上乘以2)(分母上可以乘上2,如果分母不乘2,則要在凸性效應的分母上乘以2)
從公式上可以看出來,只要漲得快、跌得慢,或者正向價格波動比負向價格波動快,那麼凸性就是正的。
可回售債券的凸性可以從兩個角度來理解。
1、債券凸性是一種對投資者有利的特性,所以當債券對於投資者有利的時候,會呈現出凸性,即漲得快、跌得慢。對於可售回債券(putable bond),由於嵌入了對投資者有利的期權,所以會呈現出比option-free bond更加大的正凸性。
2、當債券價格低於一定程度的時候,投資者會行使售回權力,所以債券價格理論上不會低於約定的回售價格,只會越來越趨近於回售價格,所以在高利率情況下的曲線會比option-free的債券上移,呈現出更大的凸性。
Ⅶ 為什麼票面利率越大,凸性越大
凸性的性質是凸性隨久期的增加而增加。若收益率、久期(即持續期)不變,票面利率越大,凸性越大。利率下降時,凸性增加。
就是說債券的市場收益率和債券的剩餘期限一定,債券票面利率越低那麼久期就越大(這是根據久期的性質),故此凸性越大。
凸性的相加項為t*(t+1)*vt,vt為t時間點的現金流,票面利率越大,t*(t+1)*vt越大。
Ⅷ 什麼是債券凸性(債市)
凸性(convexity) 凸性是指在某一 到期收益率 下,到期收益率發生變動而引起的 價格 變 動幅度的變動程度。凸性是對債券價格曲線彎曲程度的一種度量。 凸性的出現是為了彌補 久期 本身也會隨著 利率 的變化而變化的不足。 因為在利率變化比較大的情況下久期就不能完全描述 債券價格 對利率 變動的敏感性。凸性越大,債券價格曲線彎曲程度越大, 用修正久期度量債券的 利率風險 所產生的誤差越大。