❶ 計算債券的久期
時期 現金流 現金流量的現值 t*PVCF^b
1 6 5.6603 5.6603
2 6 5.3400 10.6800
3 106 88.9996 266.9988
總計 100.0000 283.3391
久期=283.3391/100/1.06=2.52
久期即收益率變動一個百分點所引起的價格變動的近似百分比
用泰勒展開價格函數的公式
dP=dP/dY*dY+0.5d^2P/(dY)^2+誤差項
這個式子里第一項是久期第二項就是凸性
凸性就是價格函數的二階導數,是為了更准確的計算收益率的變動導致的債券價格的變動
❷ 1)計算一個債券的修正久期、、請給出詳細解答過程
修正久期=麥考利久期÷[1+(Y/N)],
因為,在本題中,1+Y/N=1+11.5%/2=1.0575;
所以,正久期=13.083/1.0575=12.37163,D是最合適的答案。
麥考林久期(MAC DUR),修正久期(MOD DUR)分零息與付息債券,對於零息MAC DUR=到期時間(T),修正久期=T/[1+(Y/N)],Y表示年利率,N表計算復利次數。
對於付息債券,MAC DUR=每期支付折現除以現值乘與期數,修正久期=MAC/[1+(Y/N)]。
修正久期是對於給定的到期收益率的微小變動,債券價格的相對變動與其麥考利久期的比例。這種比例關系是一種近似的比例關系,以債券的到期收益率很小為前提。是在考慮了收益率的基礎上對麥考利久期進行的修正,是債券價格對於利率變動靈敏性的更加精確的度量。
當投資者判斷當前的利率水平有可能上升時,集中投資於短期債券、縮短債券久期;當投資者判斷當前的利率水平有可能下降時,拉長債券久期、加大長期債券的投資,幫助投資者在債市的上漲中獲得更高的溢價。
修正久期定義:
△P/P≈-D*×△y+(1/2)*conv*(△y)^2
從這個式子可以看出,對於給定的到期收益率的微小變動,債券價格的相對變動與修正久期之間存在著嚴格的比例關系。所以說修正久期是在考慮了收益率項 y 的基礎上對 Macaulay久期進行的修正,是債券價格對於利率變動靈敏性的更加精確的度量。
❸ 債券組合久期計算
選C,5+0.195億*6.5/1億=6.2675
❹ 關於債券組合久期的計算
債券組合的久期,是按照市值加權計算的,A債券的權重是60%,B債券的權重是40%
組合的久期=60%*7+40%*10=8.2
❺ 債券久期如何計算
債券久期是債券投資的專業術語,反映的是債券價格相對市場利率正常的波動敏感程度,也就是債券持有到期時間。久期越長,債券對利率敏感度越高,其對應風險也越大。
債券久期計算公式有三種,分別是:
公式一:
(5)債券的久期計算例題擴展閱讀:
債券是政府、企業、銀行等債務人為籌集資金,按照法定程序發行並向債權人承諾於指定日期還本付息的有價證券。
債券(Bonds / debenture)是一種金融契約,是政府、金融機構、工商企業等直接向社會借債籌借資金時,向投資者發行,同時承諾按一定利率支付利息並按約定條件償還本金的債權債務憑證。債券的本質是債的證明書,具有法律效力。債券購買者或投資者與發行者之間是一種債權債務關系,債券發行人即債務人,投資者(債券購買者)即債權人 。
債券是一種有價證券。由於債券的利息通常是事先確定的,所以債券是固定利息證券(定息證券)的一種。在金融市場發達的國家和地區,債券可以上市流通。在中國,比較典型的政府債券是國庫券。
❻ 一個債券價格和麥考利久期的計算
修正久期=麥考利久期÷[1+(Y/N)],
因為這里,1+Y/N=1+11。5%/2=1。0575;
因此,正持續時間=13.83/1.0575=12.37163,D是最合適的答案。
MACDUR=maturity(T),修改後的存續期=T/[1+(Y/N)],Y為年利率,復利次數在N個表中計算。
對於付息債券,MACDUR=每期貼現率除以當前價值乘以期數,修改後的期限=MAC/[1+(Y/N)]。
如果市場利率是Y,現金流(X1,X2,...,Xn)的麥考利久期定義為:D(Y)=[1*X1/(1+Y)^1+2*X2/(1+Y)^2+...+n*Xn/(1+Y)^n]/[X0+x1/(1+Y)^1+X2/(1+Y)^2+...+Xn/(1+Y)^n]
即D=(1*PVx1+...n*PVxn)/PVx
其中,PVXi表示第i期現金流的現值,D表示久期。
(6)債券的久期計算例題擴展閱讀:
調整期是指特定債券的到期收益率相對於麥考利期的一個小變化。這個比率是基於債券到期收益率很小的前提下的近似比率。債券價格是衡量債券價格對利率變動敏感性的一個較為准確的指標。
當投資者判斷當前的利率水平有可能上升時,他們將注意力集中在短期債券上,縮短債券的期限。當投資者判斷當前利率可能會下降時,延長債券到期日並加大對長期債券的投資,有助於投資者在債券市場上漲時獲得更高的溢價。
修訂的期限定義:
P/P物質-D乘以y+conv(1/2)乘以y²
由該公式可以看出,對於給定的到期收益率變化較小的情況下,債券價格的相對變化與修正後的期限之間存在嚴格的比例關系。因此,考慮到Y收益率,調整期是衡量債券價格對利率變化的敏感性的更准確的指標。
❼ 金融久期及凸性計算題
看了這個帖子才知道Duration和Convexity的中文翻譯是「久期」和「凸性」...
1.
Modified Duration
= (1 * PVCF1 + 2 * PVCF2 + ... + n * PVCFn)/(k * Price)(1 + yield/k)
其中:
PVCF是每筆資金流的現值。
k是每年付款的次數。你說是歐洲美元債券,所以我設k=2
Price是債券的價格。因為票息率等於收益率,所以價格等於面值。
yield是收益率。
用這個公式計算出來,Modified Duration是4.96,即D=4.96。具體的資金流情況如下:
資金期數 資金值 資金現值
1 $40.00 $38.46
2 $40.00 $36.98
3 $40.00 $35.56
4 $40.00 $34.19
5 $40.00 $32.88
6 $40.00 $31.61
7 $40.00 $30.40
8 $40.00 $29.23
9 $40.00 $28.10
10 $40.00 $27.02
11 $40.00 $25.98
12 $1,040.00 $649.58
2、
Convexity = [(V+) + (V-) - 2(V0)] / [2 (V0) (delta yield)^2]
其中:
V+是收益率增加後的債券價格,這里是999.53785。
V-是收益率下降後的債券價格,這里是1000.46243。
V0是目前收益率下的債券價格,這里是面值1000。
delta yield是上升和下降的收益率之差,這里是0.0002。
用這個公式計算,Convexity是3.5,即G=3.5。
3.
Percentage Price Change
= -Duration * delta yield * 100 + Convexity * (delta yield)^2 * 100
= -4.96 * 0.02 * 100 + 3.5 * (0.02)^2 * 100
= -9.78%
❽ 一個關於債券久期的計算問題
債券息票為10元,價格用excel計算得,96.30元
久期=(1*10/(1+11%)^1+2*10/(1+11%)^2+3*10/(1+11%)^3+4*10/(1+11%)^4+5*10/(1+11%)^5+5*100/(1+11%)^5)/96.30=4.15
若利率下降1個百分點,債券價格上升=4.15*1%=4.15%
變化後債券價格=96.30*(1+4.15%)=100.30元
當然,以久期衡量的價格變化均為近似值,因為我們知道,當利率變為10%後,就等於票面利率,債券價格應該為100元整。
❾ 久期的計算的計算公式是什麼
如果市場利率是Y,現金流(X1,X2,...,Xn)的麥考利久期定義為:D(Y)=[1*X1/(1+Y)^1+2*X2/(1+Y)^2+...+n*Xn/(1+Y)^n]/[X0+x1/(1+Y)^1+X2/(1+Y)^2+...+Xn/(1+Y)^n]
即 D=(1*PVx1+...n*PVxn)/PVx
其中,PVXi表示第i期現金流的現值,D表示久期。
(9)債券的久期計算例題擴展閱讀:
久期定理
定理一:只有零息債券的馬考勒久期等於它們的到期時間。
定理二:直接債券的馬考勒久期小於或等於它們的到期時間。
定理三:統一公債的馬考勒久期等於(1+1/y),其中y是計算現值採用的貼現率。
定理四:在到期時間相同的條件下,息票率越高,久期越短。
定理五:在息票率不變的條件下,到期時間越久,久期一般也越長。
定理六:在其他條件不變的情況下,債券的到期收益率越低,久期越長。