A. 含權債各項指標計算公式急求
要看是復息債或是單息債,一般情況下復息是:面值×利率,每年處息1次,復息是:面值×〈1+利率〉年的次方。
B. 含權債券如何定價
我認為就是按5年期定價附加選擇權,而選擇權都是有價值的,所以其實比單純的5年期要好。至於5年到後,是不是上調,要看市場情況和發行人資金緊張情況
C. 什麼是債券的久期,修正久期和基點價值
1、債券久期是指由於決定債券價格利率風險大小的因素主要包括償還期和息票利率,因此需要找到某種簡單的方法,准確直觀地反映出債券價格的利率風險程度。
2、修正久期是對於給定的到期收益率的微小變動,債券價格的相對變動與其麥考利久期的比例。這種比例關系是一種近似的比例關系,以債券的到期收益率很小為前提。是在考慮了收益率的基礎上對麥考利久期進行的修正,是債券價格對於利率變動靈敏性的更加精確的度量。
3、基點價格值是指到期收益率變化一個基點,也就是0.01個百分點時,債券價格的變動值。基點價格值是價格變化的絕對值,價格變化的相對值稱作價格變動百分比,它是價格變化的絕對值相對於初始價格的百分比,用式子表示就是:價格變動百分比=基點價格值/初始價格。
應答時間:2020-12-09,最新業務變化請以平安銀行官網公布為准。
[平安銀行我知道]想要知道更多?快來看「平安銀行我知道」吧~
https://b.pingan.com.cn/paim/iknow/index.html
D. 債券 久期是什麼
債券的久期
1.麥考利久期又稱為存續期,是指債券的平均到期時間,回從現值角度度量了債券現金流答的加權平均年限,即債券投資者收回其全部本金和利息的平均時間。
2.零息債券麥考利久期等於期限。
3.麥考利久期公式:Dmac=-(△P/△y)(1+y)/p。
修正的麥考利久期等於麥考利久期除以(1+y),即:
E. 請列舉兩種含權債券並分別解釋所含權利的意義
含權債券的解釋太難了。
F. 久期的債券投資
利用久期控制利率風險
在債券投資里,久期可以被用來衡量債券或者債券組合的利率風險,一般來說,久期和債券的到期收益率成反比,和債券的剩餘年限及票面利率成正比。對於一個普通的附息債券,如果債券的票面利率和其當前的收益率相當的話,該債券的久期就等於其剩餘年限當一個債券是貼現發行的無票面利率債券,那麼該債券的剩餘年限就是其久期。債券的久期越大,利率的變化對該債券價格的影響也越大,因此風險也越大。在降息時,久期大的債券上升幅度較大;在升息時,久期大的債券下跌的幅度也較大。因此,預期未來升息時,可選擇久期小的債券。在債券分析中久期已經超越了時間的概念,投資者更多地把它用來衡量債券價格變動對利率變化的敏感度,並且經過一定的修正,以使其能精確地量化利率變動給債券價格造成的影響。修正久期越大,債券價格對收益率的變動就越敏感,收益率上升所引起的債券價格下降幅度就越大,而收益率下降所引起的債券價格上升幅度也越大。
債券對利率變動的反應特徵如下:債券價格與利率變化反向變動;在給定利率變化水平下,長期債券價格變動較大,因此債券價格變化直接與期限有關;隨著到期時間的增加,債券對於利率變化的敏感度是以一個遞減的速度增長;由相同幅度的到期收益率的絕對變化帶來的價格變化是非對稱的,具體來說,在期限給定條件下,到期收益率降低引起的價格上升,大於到期收益率上升引相同幅度起的價格下降;票息高的債券比那些票息低的債券對利率的敏感性要低。
利用久期進行免疫
所謂免疫,就是構建這樣的一個投資組合,在組合內部,利率變化對債券價格的影響可以互相抵消,因此組合在整體上對利率不具有敏感性。而構建這樣組合的基本方法就是通過久期的匹配,使附息債券可以精確地近似於一隻零息債券。利用久期進行免疫是一種消極的投資策略,組合管理者並不是通過利率預測去追求超額報酬,而只是通過組合的構建,在迴避利率波動風險的條件下實現既定的收益率目標。在組合品種的設計中,除了國債可以選入組合外,部分收益率較高的企業債券及金融債券也能加入投資組合,條件是控制好匹配的久期。
但是,免疫策略本身帶有一定的假設條件,比如收益率曲線的變動不是很大,到期收益率的高低與市場利率的變化之間有一個平衡點,一旦收益率確實發生了很大的變動,則投資組合不再具有免疫作用,需要進行再免疫,或是再平衡;其次,免疫嚴格限定了到期支付日,對於那些支付或終止期不能確定的投資項目而言並不是最優;再次,投資組合的免疫作用僅對於即期利率的平行移動有效,對於其他變動,需要進一步拓展應用。
利用久期優化投資組合
進行免疫後的投資組合,雖然降低了利率波動的風險,但是組合的收益率卻會偏低。為了實現在免疫的同時也能增加投資的收益率,可以使用回購放大的辦法,來改變某一個債券的久期,然後修改免疫方程式,找到新的免疫組合比例,這樣就可以提高組合的收益率。但是,在回購放大操作的同時,投資風險也在同步放大,因此要嚴格控制放大操作的比例。
G. 如何利用久期和凸性 衡量債券的利率風險
久期和凸性是衡量債券利率風險的重要指標。很多人把久期簡單地視為債券的到期期限,其實是對久期的一種片面的理解,而對凸性的概念更是模糊。在債券市場投資行為不斷規范,利率風險逐漸顯現的今天,如何用久期和凸性量化債券的利率風險成為業內日益關心的問題。
久期
久期(也稱持續期)是1938年由
F.R.Macaulay提出的,用來衡量債券的到期時間。它是以未來收益的現值為權數計算的到期時間。其公式為
其中,P=債券現值,Ct=每年支付的利息,y=到期收益率,n=到期期數,M=到期支付的面值。
可見久期是一個時間概念,是到期收益率的減函數,到期收益率越高,久期越小,債券的利率風險越小。久期較准確地表達了債券的到期時間,但無法說明當利率發生變動時,債券價格的變動程度,因此引入了修正久期的概念。
修正久期
修正久期是用來衡量債券價格對利率變化的敏感程度的指標。由於債券的現值
對P求導並加以變形,得到:
我們將
的絕對值稱作修正久期,它表示市場利率的變化引起的債券價格變動的幅度。這樣,不同現值的券種就可以用修正久期這個指標進行比較。
由公式1和公式2我們可以得到:
在某一特定到期收益率下,P為常數,我們記作P0,即得到:
由於P0是理論現值,為常數,因此,債券價格曲線P與P
/P 0有相同的形狀。由公式7,在某一特定到期收益率下,P /P
0的斜率為修正久期,而債券價格曲線P的斜率為P0×(修正久期)。
修正久期度量了收益率與債券價格的近似線性關系,即到期收益率變化時債券價格的穩定性。修正久期越大,斜率的得絕對值越大,P對y的變動越敏感,y上升時引起的債券價格下降幅度越大,y下降時引起的債券價格上升幅度也越大。可見,同等要素條件下,修正久期小的債券較修正久期大的債券抗利率上升風險能力強,但抗利率下降風險能力較弱。
但修正久期度量的是一種近似線性關系,這種近似線性關系使由修正久期計算得出的債券價格變動幅度存在誤差。如下圖,對於債券B′,當收益率分別從y上升到y1或下降到y2,由修正久期計算出來的債券價格變動分別存在P1′P1"和P2′P2"的誤差。誤差的大小取決於曲線的凸性。
市場利率變化時,修正久期穩定性如何?比如上圖中,B′和B"的修正久期相同,是否具有同等利率風險呢?顯然不同。當y變大時,B"價格減少的幅度要小,而當y變小時,B"價格變大的幅度要大。顯然,B"的利率風險要小於
B′。因此修正久期用來度量債券的利率風險仍然存在一定誤差,尤其當到期收益率變化較大時。凸性可以更准確地度量該風險。
凸性
利用久期衡量債券的利率風險具有一定的誤差,債券價格隨利率變化的波動性越大,這種誤差越大。凸性可以衡量這種誤差。
凸性是對債券價格曲線彎曲程度的一種度量。凸性越大,債券價格曲線彎曲程度越大,用修正久期度量債券的利率風險所產生的誤差越大。嚴格地定義,凸性是指在某一到期收益率下,到期收益率發生變動而引起的價格變動幅度的變動程度。
根據其定義,凸性值的公式為:
凸性值
=
凸性值是價格變動幅度對收益率的二階導數。假設P0是理論現值,則凸性值=
應用
由於修正久期度量的是債券價格和到期收益率的近似線性關系,由此計算得出的債券價格變動幅度存在誤差,而凸性值對這種誤差進行了調整。
根據泰勒系列式,我們可以得到
的近似值:
這就是利用修正久期和凸性值量化債券利率風險的計算方法。我們可以看到,當y上升時, 為負數,若凸性值越大,則
的絕對值越小;當y下降時,為正數,若凸性值越大,則越大。
因此,凸性值越大,債券利率風險越小,對債券持有者越有利;而修正久期具有雙面性,具有較小修正久期的債券抗利率上升風險較強,而當利率下降時,其價格增幅卻小於具有較大修正久期債券的價格增幅。
以國債21國債(15)和03國債(11)為例,兩券均為7年期固息債,每年付息一次(附表為今年3月1日的有關指標)。
相比之下,21國債(15)具有較小的修正久期和較小的凸性值。如果收益率都上升50個基點,其價格變動幅度分別為:
21國債(15):
03國債(11):
可見經過對久期和凸性的簡單計算,可以比較直觀地衡量債券的利率風險。如果收益率變動幅度不大,則一般修正久期即可以作為度量利率風險的近似指標。
H. 什麼是含權債券
含權復債券是除了到期時可以得到約定的制利息以外,還附帶有其它約定的權利的一種債券。
①債券(Bonds / debenture)是一種金融契約,是政府、金融機構、工商企業等直接向社會借債籌措資金時,向投資者發行,同時承諾按一定利率支付利息並按約定條件償還本金的債權債務憑證。
②含權債券如何定價:按5年期定價附加選擇權,而選擇權都是有價值的,所以其實比單純的5年期要好。至於5年到後,是不是上調,要看市場情況和發行人資金緊張情況。
I. CFA一級中關於固定收益部分久期凸性計算的一道題。請教
根據ration,變化2%*10.34=20.68%
再根據convexity修正,肯定是小於20.68%的,就選17.65%
具體變化=-2%*10.34+(1/2)*151.60*2%*2%=-17.648%
至於困擾你的計算回convexity時候為什答么要除以2,因為ration是利率變化的一階導數,而convexity是利率變化的二階導數,泰勒級數的展開的第二項,就是要乘以二分之一,如果有三階導數,更精確,三階導數的系數就是六分之一。這是一個純粹的數學問題。你在考試時,需要記住這個公式。
J. 1)計算一個債券的修正久期、、請給出詳細解答過程
修正久期=麥考利久期÷[1+(Y/N)],
因為,在本題中,1+Y/N=1+11.5%/2=1.0575;
所以,正久期=13.083/1.0575=12.37163,D是最合適的答案。
麥考林久期(MAC DUR),修正久期(MOD DUR)分零息與付息債券,對於零息MAC DUR=到期時間(T),修正久期=T/[1+(Y/N)],Y表示年利率,N表計算復利次數。
對於付息債券,MAC DUR=每期支付折現除以現值乘與期數,修正久期=MAC/[1+(Y/N)]。
修正久期是對於給定的到期收益率的微小變動,債券價格的相對變動與其麥考利久期的比例。這種比例關系是一種近似的比例關系,以債券的到期收益率很小為前提。是在考慮了收益率的基礎上對麥考利久期進行的修正,是債券價格對於利率變動靈敏性的更加精確的度量。
當投資者判斷當前的利率水平有可能上升時,集中投資於短期債券、縮短債券久期;當投資者判斷當前的利率水平有可能下降時,拉長債券久期、加大長期債券的投資,幫助投資者在債市的上漲中獲得更高的溢價。
修正久期定義:
△P/P≈-D*×△y+(1/2)*conv*(△y)^2
從這個式子可以看出,對於給定的到期收益率的微小變動,債券價格的相對變動與修正久期之間存在著嚴格的比例關系。所以說修正久期是在考慮了收益率項 y 的基礎上對 Macaulay久期進行的修正,是債券價格對於利率變動靈敏性的更加精確的度量。