Ⅰ 凸性為正的債券是什麼意思怎麼看凸性的正負呢
凸性是對債抄券價格利率敏感襲性的二階估計,是對債券久期利率敏感性的測量。在價格-收益率出現大幅度變動時,它們的波動幅度呈非線性關系。由持久期作出的預測將有所偏離。凸性就是對這個偏離的修正。它由以下公式定義: 無論收益率是上升還是下降,凸性所引起的修正都是正的。因此如果修正持久期相同,凸性越大越好。
Ⅱ 什麼是凸性
凸性描述了價格收益率曲線的彎曲程度。凸性是債券價格對收益率的二階導數。
Ⅲ 連報的名詞解釋
004-10-28 16:39:22
回答:小賽克610903
智者
10月28日 18:56 久期和凸性是衡量債券利率風險的重要指標。很多人把久期簡單地視為債券的到期期限,其實是對久期的一種片面的理解,而對凸性的概念更是模糊。在債券市場投資行為不斷規范,利率風險逐漸顯現的今天,如何用久期和凸性量化債券的利率風險成為業內日益關心的問題。
久期
久期(也稱持續期)是1938年由F.R.Macaulay提出的,用來衡量債券的到期時間。它是以未來收益的現值為權數計算的到期時間。久期收益率變化1%所引起的債券全價變化的百分比。久期用來衡量債券價格對利率變化的敏感性。
債券的久期越大,利率的變化對該債券價格的影響也越大,因此風險也越大。在降息時,久期大的債券上升幅度較大;在升息時,久期大的債券下跌的幅度也較大。因此,投資者在預期未來降息時,可選擇久期大的債券;在預期未來升息時,可選擇久期小的債券。
修正久期
修正久期是用來衡量債券價格對利率變化的敏感程度的指標。
具體地說,有公式
其中,dy表示收益率的變化,dP表示價格的變化,D*表示修正久期,C表示凸性。
修正久期的具體計算公式為
修正久期度量了收益率與債券價格的近似線性關系,即到期收益率變化時債券價格的穩定性。在同等要素條件下,修正久期小的債券較修正久期大的債券抗利率上升風險能力強,但抗利率下降風險能力較弱。
凸性
利用久期衡量債券的利率風險具有一定的誤差,債券價格隨利率變化的波動性越大,這種誤差越大。凸性可以衡量這種誤差。
凸性是對債券價格曲線彎曲程度的一種度量。凸性越大,債券價格曲線彎曲程度越大,用修正久期度量債券的利率風險所產生的誤差越大。嚴格地定義,凸性是指在某一到期收益率下,到期收益率發生變動而引起的價格變動幅度的變動程度。
凸性的具體計算公式為
當兩個債券的久期相同時,它們的風險不一定相同,因為它們的凸性可能是不同的。
如圖所示,兩個債券的收益率與價格的關系為紅線與綠線,內側的曲線(綠線)為凸性大的曲線,外側的曲線為凸性小的曲線(紅線)。在收益率增加相同單位時,凸性大的債券價格減少幅度較小;在收益率減少相同單位時,凸性大的債券價格增加幅度較大。因此,在久期相同的情況下,凸性大的債券其風險較小。
由於修正久期度量的是債券價格和到期收益率的近似線性關系,由此計算得出的債券價格變動幅度存在誤差,而凸性值對這種誤差進行了調整。
具體公式和圖見:http://bond.hexun.com/detail.aspx?lm=1289&id=774372
參考文獻:如何利用久期和凸性 衡量債券的利率風險
Ⅳ 如何理解可售回債券的凸性特徵
不止可回售債券啊,絕大多數債券都是呈現正凸性的。(分母上可以版乘上2,如果分母不乘2,則權要在凸性效應的分母上乘以2)(分母上可以乘上2,如果分母不乘2,則要在凸性效應的分母上乘以2)
從公式上可以看出來,只要漲得快、跌得慢,或者正向價格波動比負向價格波動快,那麼凸性就是正的。
可回售債券的凸性可以從兩個角度來理解。
1、債券凸性是一種對投資者有利的特性,所以當債券對於投資者有利的時候,會呈現出凸性,即漲得快、跌得慢。對於可售回債券(putable bond),由於嵌入了對投資者有利的期權,所以會呈現出比option-free bond更加大的正凸性。
2、當債券價格低於一定程度的時候,投資者會行使售回權力,所以債券價格理論上不會低於約定的回售價格,只會越來越趨近於回售價格,所以在高利率情況下的曲線會比option-free的債券上移,呈現出更大的凸性。
Ⅳ 金融久期和凸性分別是什麼
這需要用到微積分的泰勒展開式
f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!·(x-x.)^2+……+f(n)(x.)/n!·(x-x.)^n+Rn
D(久期)=1*PVx1+...n*PVxn)/PVx PVXi表示第i期現金流的現值
即以未來時間發生的現金流,按照目前的收益率折現成現值,再用每筆現值乘以其距離債券到期日的年限求和,然後以這個總和除以債券目前的價格得到的數值。
久期描述了價格-收益率曲線的斜率,凸性描述了曲線的彎曲程度。凸性是債券價格對收益率的二階導數,是對債券久期利率敏感性的測量。在價格-收益率出現大幅度變動時,它們的波動幅度呈非線性關系。由持久期作出的預測將有所偏離。凸性就是對這個偏離的修正。
如果上面你比較迷茫的話,我現在再來說簡單點,不過打字比較麻煩啊
Macaulay久期就是從當前時刻至到期日之間所有現金流流入的加權平均時間間隔。
債券價格B=∑Ci·e^(-y·Ti)
Ci表示各付息日Ti的現金流入 y表示連續復利計算的到期收益率
將B對y求導並除以B取負號就得到了麥考利久期
D=-dB/dy·1/B=∑[Ci·e^(-y·Ti)]·Ti/B
B(y)在y.處一階泰勒展開為B(y.+△y)=B(y.)+dB/dy·△y
則△B/B=dB/dy·1/B·△y
由D=-dB/dy·1/B得△B/B=-D·△y
若對於給定的收益率變動幅度,久期或修正久期越大,則債券價格的波動率越大。
當△y較大時,為了更精確,需要對B(y)在y.處二階泰勒展開:
B(y.+△y)=B(y.)+dB/dy·△y+1/2·d²B/dy²·(△y)²
△B/B=dB/dy·1/B·△y+1/2·1/B·d²B/dy²·(△y)²
定義凸度為債券價格對收益率二階導數除以價格即C=1/B·d²B/dy²
△B/B=-D·△y+1/2·C·(△y)²
當收益率變化很小時,如只有千分之一,則凸度就幾乎不起作用,了解了否?
Ⅵ 什麼是債券的凹性
你問了一個很專業的問題,我盡力幫你解釋一下
是凸性阿同學,不是凹性
債券的收益率和價格是呈現反比的,我們把它稱為債券的收益率價格曲線。
為了研究債券價格對利率風險的敏感程度,我們引入久期的概念,也就是對價格收益率曲線作切線來研究價格的變動。
但是久期作為切線是一條直線,不足以表現出價格和收益率曲線,所以我們對久期進行二階修正,這個就是凸性
簡單的說是對利率變動對債券價格的修正
Ⅶ 債券所具有的凸性是指()是一種凸線型關系
凸性是對債券價格利率敏感性的二階估計,是對債券久期利率敏感性的測量。在價格-收益率出現大幅度變動時,它們的波動幅度呈非線性關系。由持久期作出的預測將有所偏離。凸性就是對這個偏離的修正。它由以下公式定義: 無論收益率是上升還是下降,凸性所引起的修正都是正的。因此如果修正持久期相同,凸性越大越好。
Ⅷ 什麼是債券凸性
凸性是來對債券價格利率敏感性自的二階估計,是對債券久期利率敏感性的測量。在價格-收益率出現大幅度變動時,它們的波動幅度呈非線性關系。由持久期作出的預測將有所偏離。凸性就是對這個偏離的修正。它由以下公式定義: 無論收益率是上升還是下降,凸性所引起的修正都是正的。因此如果修正持久期相同,凸性越大越好。
Ⅸ 久期及凸性的解釋,求息票債券的價格及久期
價格:982.27,久期1.87
久期和凸性分析債券的利率風險,即到期收益率隨市場利率發生變化時,債券價格的變化
實際上債券價格和到期收益率形成一個曲線,分析在到期收益率(本例中為10%)附近的曲線,將此曲線近似為直線,就是久期;近似為二次曲線,就是凸性。
Ⅹ 國債中的"修正久期"和"凸性"是什麼意思
問得比較專業,呵呵。 1962年麥爾齊最早提出債券定價的五個原理,至今被視為債券定價理論的經典。其一,債券的價格與收益率成反比關系。其二,對於期限既定的債券,由收益率下降導致的債券價格上升的幅度大於同等幅度的收益率上升導致的債券價格下降的幅度。由此而推出債券價值分析的「凸性」概念,凸性反映債券價格與債券收益率在圖形中的反比關系,等於價格-收益曲線除以債券價格的二階導數。 計算公式;c=1/p∑pv(t2+t)/(1+y)t+2 久期是馬考勒提出的,它使用加權平均的形式計算債券的平均到期時間 公式:D=∑[PV(ct)t/P0] 修正馬考勒久期是債券價格曲線的斜率,即久期除以(1+y),在度量債券的利率風險方面,修正久期比久期更加方便。他是一個強度概念,反映市場利率變化對債券價格的影響強度。