Ⅰ 金融久期和凸性分別是什麼
這需要用到微積分的泰勒展開式
f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!·(x-x.)^2+……+f(n)(x.)/n!·(x-x.)^n+Rn
D(久期)=1*PVx1+...n*PVxn)/PVx PVXi表示第i期現金流的現值
即以未來時間發生的現金流,按照目前的收益率折現成現值,再用每筆現值乘以其距離債券到期日的年限求和,然後以這個總和除以債券目前的價格得到的數值。
久期描述了價格-收益率曲線的斜率,凸性描述了曲線的彎曲程度。凸性是債券價格對收益率的二階導數,是對債券久期利率敏感性的測量。在價格-收益率出現大幅度變動時,它們的波動幅度呈非線性關系。由持久期作出的預測將有所偏離。凸性就是對這個偏離的修正。
如果上面你比較迷茫的話,我現在再來說簡單點,不過打字比較麻煩啊
Macaulay久期就是從當前時刻至到期日之間所有現金流流入的加權平均時間間隔。
債券價格B=∑Ci·e^(-y·Ti)
Ci表示各付息日Ti的現金流入 y表示連續復利計算的到期收益率
將B對y求導並除以B取負號就得到了麥考利久期
D=-dB/dy·1/B=∑[Ci·e^(-y·Ti)]·Ti/B
B(y)在y.處一階泰勒展開為B(y.+△y)=B(y.)+dB/dy·△y
則△B/B=dB/dy·1/B·△y
由D=-dB/dy·1/B得△B/B=-D·△y
若對於給定的收益率變動幅度,久期或修正久期越大,則債券價格的波動率越大。
當△y較大時,為了更精確,需要對B(y)在y.處二階泰勒展開:
B(y.+△y)=B(y.)+dB/dy·△y+1/2·d²B/dy²·(△y)²
△B/B=dB/dy·1/B·△y+1/2·1/B·d²B/dy²·(△y)²
定義凸度為債券價格對收益率二階導數除以價格即C=1/B·d²B/dy²
△B/B=-D·△y+1/2·C·(△y)²
當收益率變化很小時,如只有千分之一,則凸度就幾乎不起作用,了解了否?
Ⅱ 在債券投資分析中,凸性和久期有什麼作用,怎樣實施免疫策略
決定久期即影響債券價格對市場利率變化的敏感性包括三要素:到期時間、息票利率和到期收益率.久期的用途
在債券分析中,久期已經超越了時間的概念,投資者更多地把它用來衡量債券價格變動對利率變化的敏感度,並且經過一定的修正,以使其能精確地量化利率變動給債券價格造成的影響.修正久期越大,債券價格對收益率的變動就越敏感,收益率上升所引起的債券價格下降幅度就越大,而收益率下降所引起的債券價格上升幅度也越大.可見,同等要素條件下,修正久期小的債券比修正久期大的債券抗利率上升風險能力強,但抗利率下降風險能力較弱.
正是久期的上述特徵給我們的債券投資提供了參照.當我們判斷當前的利率水平存在上升可能,就可以集中投資於短期品種、縮短債券久期;而當我們判斷當前的利率水平有可能下降,則拉長債券久期、加大長期債券的投資,這就可以幫助我們在債市的上漲中獲得更高的溢價.
需要說明的是,久期的概念不僅廣泛應用在個券上,而且廣泛應用在債券的投資組合中.一個長久期的債券和一個短久期的債券可以組合一個中等久期的債券投資組合,而增加某一類債券的投資比例又可以使該組合的久期向該類債券的久期傾斜.所以,當投資者在進行大資金運作時,准確判斷好未來的利率走勢後,然後就是確定債券投資組合的久期,在該久期確定的情況下,靈活調整各類債券的權重,基本上就能達到預期的效果.
久期是一種測度債券發生現金流的平均期限的方法.由於債券價格敏感性會隨著到期時間的增長而增加,久期也可用來測度債券對利率變化的敏感性,根據債券的每次息票利息或本金支付時間的加權平均來計算久期.
久期的計算就當是在算加權平均數.其中變數是時間,權數是每一期的現金流量,價格就相當於是權數的總和(因為價格是用現金流貼現算出來的).這樣一來,久期的計算公式就是一個加權平均數的公式了,因此,它可以被看成是收回成本的平均時間.
決定久期即影響債券價格對市場利率變化的敏感性包括三要素:到期時間、息票利率和到期收益率.
不同債券價格對市場利率變動的敏感性不一樣.債券久期是衡量這種敏感性最重要和最主要的標准.久期等於利率變動一個單位所引起的價格變動.如市場利率變動1%,債券的價格變動3,則久期是3.
Ⅲ 您好,請問您知道債券的久期與凸度的區別嗎
久期項是債券抄價格與利率關襲系的一階導數,凸性是債券價格對利率的二階導數。
債券價格的實際變動量是久期和凸性兩個因素所導致的價格變動部分的疊加。而對於收益率較大幅度的變動,僅僅使用久期的部分作為價格變動的估計是有較大誤差的,在這種情況下,債券價格的變化幅度可以通過加總久期和凸性所分別導致的價格變化部分而得到更為准確的估計。具體地說,只要將二者直接進行簡單的加總即可。
現實中的應用:若預測收益率將下降,對於久期相同的債券,選擇凸性較大的品種較為有利,反之則反。
Ⅳ 有關久期凸性的計算債券價格
第一問,以市場利率為6%為例,計算現在的合理債券價格=5/(1+6%)+5/(1+6%)^2+5/(1+6%)^3+5/(1+6%)^4+5/(1+6%)^5+100/(1+6%)^5=95.79元
其他各種利率,把6%換成不同的折現率,分別計算。
在市場利率為5%、5.5%、5.85%、6%、6.2%的時候,債券價格分別為:
100元、97.86元、96.40元、95.79元、94.97元。
第二問,以市場利率5%為例,市場利率上升5、10、50、100個基點,變化後的市場利率分別為5.05%、5.1%、5.5%和6%,套用以上公式,債券價格分別為:99.78元、99.57元、97.86元、95.79元。
修正久期公式為△P/P≈-D*×△y
我們考察市場利率從5%變化到5.05%這個微小變化,價格變化為-0.22,利率變化為0.05%
P=100,所以修正久期D*=4.4
根據這個修正久期,當市場利率從5%變化到5.1%的時候,債券價格將下降4.4*0.1=0.44元,即,從100元變為99.56元,實際價格變為99.57元,實際的差距是0.01元。
凸性設為C,則對於0.1個百分比的變化率,有
0.01元=1/2 * C * 0.1^2
解得C=2,凸度為2.
以上供參考。
Ⅳ 國債中的"修正久期"和"凸性"是什麼意思
問得比較專業,呵呵。 1962年麥爾齊最早提出債券定價的五個原理,至今被視為債券定價理論的經典。其一,債券的價格與收益率成反比關系。其二,對於期限既定的債券,由收益率下降導致的債券價格上升的幅度大於同等幅度的收益率上升導致的債券價格下降的幅度。由此而推出債券價值分析的「凸性」概念,凸性反映債券價格與債券收益率在圖形中的反比關系,等於價格-收益曲線除以債券價格的二階導數。 計算公式;c=1/p∑pv(t2+t)/(1+y)t+2 久期是馬考勒提出的,它使用加權平均的形式計算債券的平均到期時間 公式:D=∑[PV(ct)t/P0] 修正馬考勒久期是債券價格曲線的斜率,即久期除以(1+y),在度量債券的利率風險方面,修正久期比久期更加方便。他是一個強度概念,反映市場利率變化對債券價格的影響強度。
Ⅵ 已知久期凸度利率上升對債券價格的影響,求詳細解答帶公式
該債券頭寸價值變動=100萬元*(-1*8*0.25%+150*0.25%*0.25%)=-19062.5元
也就是說利率上升25基點該債券頭寸價值下跌19062.5元
Ⅶ 哪個網站有債券的久期與凸性的數據
債券的久期與凸性,是隨著時間和債券價格隨時變化的。有些債券交易軟體(比如萬得、bloomberg)可能會附帶提供這些數據,但是免費的數據,估計難以獲得。
Ⅷ 如何用數學方法證明債券的久期和凸性
什麼是凸性
久期本身也會隨著利率的變化而變化。所以它不能完全描述債券價格對利率變動的敏感性,1984年Stanley Diller引進凸性的概念。
久期描述了價格-收益率曲線的斜率,凸性描述了曲線的彎曲程度。凸性是債券價格對收益率的二階導數。
[編輯]凸性的計算
由債券定價定理1與4可知,債券價格-收益率曲線是一條從左上向右下傾斜,並且下凸的曲線。下圖中b>a。
債券定價定理1:
債券價格與到期收益率成反向關系。
若到期收益率大於息票率,則債券價格低於面值,稱為折價債券(discount bonds);
若到期收益率小於息票率,則債券價格高於面值,稱為溢價債券(premium bonds);
若息票率等於到期收益率,則債券價格等於面值,稱為平價債券(par bonds)。
對於可贖回債券,這一關系不成立。
債券定價定理4:
若債券期限一定,同等收益率變化下,債券收益率上升導致價格下跌的量,要小於收益率下降導致價格上升的量。
例:三債券的面值都為1000元,到期期限5年,息票率7%,當到期收益率變化時。
到期收益率(%) 6 7 8
價格 1042.12 1000 960.07
債券價格變化率(%) 4.21 0 -4.00
[編輯]凸性的性質
1、凸性隨久期的增加而增加。若收益率、久期不變,票面利率越大,凸性越大。利率下降時,凸性增加。
2、對於沒有隱含期權的債券來說,凸性總大於0,即利率下降,債券價格將以加速度上升;當利率上升時,債券價格以減速度下降。
3、含有隱含期權的債券的凸性一般為負,即價格隨著利率的下降以減速度上升,或債券的有效持續期隨利率的下降而縮短,隨利率的上升而延長。因為利率下降時買入期權的可能性增加了。
來自"http://wiki.mbalib.com/wiki/%E5%87%B8%E6%80%A7"